

Systèmes de Micro-Mobilité du Futur

Prédictions et Stations Virtuelles pour une Gestion Efficace

Rania Swessi - LaBRI

NOV

PLAN

- Introduction: contexte général et problématique
- Stations virtuelle pour une gestion efficace
- Méthodologie et solution proposées
- Étude de cas: analyse basée sur des données réelles collectées à Bordeaux
- Conclusion: Résultats et perspectives

La micro-mobilité partagée

- Légère et portable, la micro-mobilité est idéale pour des trajets rapides.
- Rapides et agréables, représentent une alternative efficace à la marche en zone urbaine.
- Écologiques, ils contribuent à réduire la congestion et la pollution.

La micro-mobilité partagée

modes opérationnels

système à stations fixes

retrait et retour à des stations physiques spécifiques.

Option sécurisée avec une protection contre les dommages

système en libre-service

retrait et retour libres au sein d'une zone opérationnelle.

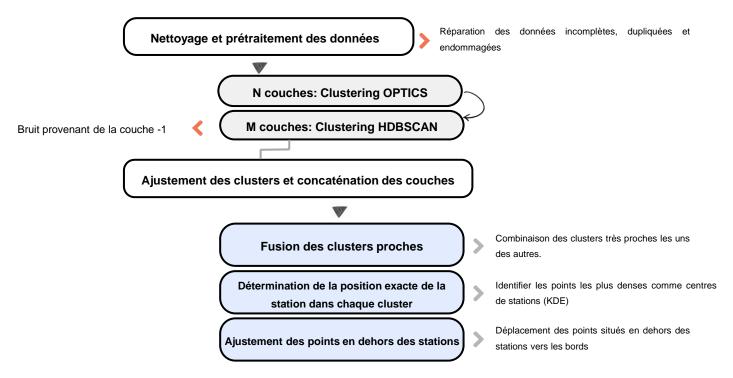
Stationnement désorganisé / occupation des espaces urbains

Solutions de stations virtuelles

- Les utilisateurs se garent dans des limites spécifiques, évitant le stationnement désorganisé.
- Réduction des dépenses d'infrastructure et de maintenance.
- Les stations peuvent être ajustées dynamiquement.

Objectifs/contributions

- Étudier une transition complète d'un système en libre-service vers un système à stations virtuelles à l'aide du clustering multi-couches.
- Assurer une qualité de service optimale grâce à un rééquilibrage stratégique basé sur la prédiction de la demande.
- Valider l'efficacité de la solution proposée par une étude expérimentale utilisant des données réelles.



Solution proposée : Transition du système

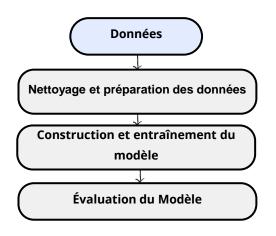
Solution proposée : Transition du système

OPTICS

- Idéal pour détecter des clusters de densités et de formes complexes variées.
- Gère de grandes variations de données sans perte de précision.

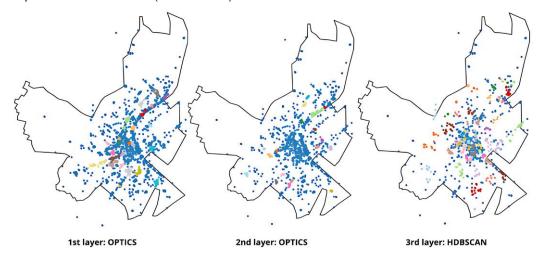
HDBSCAN

- Identifie automatiquement des clusters stables aux densités variées.
- Excellent pour gérer le bruit grâce au clustering hiérarchique.



Solution proposée : Équilibrage du système

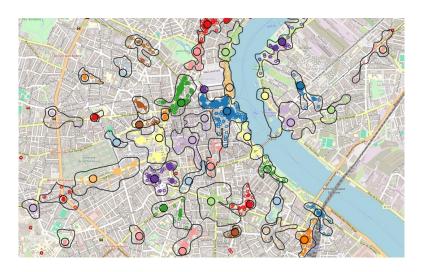
- LSTM (Long-Short Term Memory)
 - Utilise des cellules mémoire pour retenir les informations sur de longues séquences.
- Transformateur-encodeur
 - Analyse les séquences en parallèle, se concentrant sur les relations globales sans étapes temporelles.

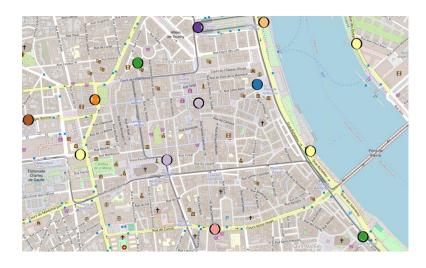


Étude de cas

- Données réelles collectées à Bordeaux, France.
- Inclut des données de trajets et de météo.
- Système en libre-service (vélos électriques, trottinettes électriques).
- Collectées sur une période de 15 mois (2021-2022).

Résultats du Clustering par Couches





Étude de cas

Visualisation des résultats du clustering et de la localisation des stations avec KDE

Étude de cas

Performance du cadre de clustering

Criterion	1st layer	2nd layer	3rd layer
SWC	0.9256	0.9997	0.9997
DBI	0.1368	0.0008	0.0012

$$SWC = \frac{1}{N} \sum_{i=1}^{N} \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

$$DBI = \frac{1}{N} \sum_{i=1}^{N} \max_{i \neq j} \left(\frac{\sigma_i + \sigma_j}{d(c_i, c_j)} \right)$$

Performance de l'outil de prédiction

Metric	LSTM	Transformer-encoder
MSE	3.067	0.259
RMSE	0.453	0.445

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j=1}^{q} (y_{pred_{i,j}} - y_{true_{i,j}})^{2}}{q}$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j=1}^{q} (y_{pred_{i,j}} - y_{true_{i,j}})^{2}}{q}}$$

Conclusion

- Transition réussie vers un système à stations virtuelles avec un placement précis des stations grâce au clustering multi-couches.
- Stratégies de rééquilibrage flexibles pour ajuster la flotte et les stations.
- Perspectives : Automatiser les ajustements dynamiques des stations en fonction de la demande.

Merci de votre attention

